14 research outputs found

    Numerical quadrature for Gregory quads

    Get PDF
    We investigate quadrature rules in the context of quadrilateral Gregory patches, in short Gregory quads. We provide numerical and where possible symbolic quadrature rules for the space spanned by the twenty polynomial/rational functions associated with Gregory quads, as well as the derived spaces including derivatives, products, and products of derivatives of these functions. This opens up the possibility for a wider adoption of Gregory quads in numerical simulations

    Locally refinable gradient meshes supporting branching and sharp colour transitions:Towards a more versatile vector graphics primitive

    Get PDF
    We present a local refinement approach for gradient meshes, a primitive commonly used in the design of vector illustrations with complex colour propagation. Local refinement allows the artist to add more detail only in the regions where it is needed, as opposed to global refinement which often clutters the workspace with undesired detail and potentially slows down the workflow. Moreover, in contrast to existing implementations of gradient mesh refinement, our approach ensures mathematically exact refinement. Additionally, we introduce a branching feature that allows for a wider range of mesh topologies, as well as a feature that enables sharp colour transitions similar to diffusion curves, which turn the gradient mesh into a more versatile and expressive vector graphics primitive

    Twenty-three unsolved problems in hydrology (UPH) – a community perspective

    Get PDF
    This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through on-line media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focussed on process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come

    A bivariate C1 subdivision scheme based on cubic half-box splines

    Get PDF
    Among the bivariate subdivision schemes available, spline-based schemes, such as Catmull-Clark and Loop, are the most commonly used ones. These schemes have known continuity and can be evaluated at arbitrary parameter values. In this work, we develop a C-1 spline-based scheme based on cubic half-box splines. Although the individual surface patches are triangular, the associated control net is three-valent and thus consists in general of mostly hexagons. In addition to introducing stencils that can be applied in extraordinary regions of the mesh, we also consider boundaries. Moreover, we show that the scheme exhibits ineffective eigenvectors. Finally, we briefly consider architectural geometry and isogeometric analysis as selected applications

    Finite element analysis enhanced with subdivision surface boundary representations

    No full text
    © 2017 Elsevier B.V. In this work we develop a design-through-analysis methodology by extending the concept of the NURBS-enhanced finite element method (NEFEM) to volumes bounded by Catmull-Clark subdivision surfaces. The representation of the boundary as a single watertight manifold facilitates the generation of an external curved triangular mesh, which is subsequently used to generate the interior volumetric mesh. Following the NEFEM framework, the basis functions are defined in the physical space and the numerical integration is realized with a special mapping which takes into account the exact definition of the boundary. Furthermore, an appropriate quadrature strategy is proposed to deal with the integration of elements adjacent to extraordinary vertices (EVs). Both theoretical and practical aspects of the implementation are discussed and are supported with numerical examples.status: publishe
    corecore